skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sykes, E. Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the comparison of a series of 2D molecular crystals formed from the intermediates of the dehalogenation reaction of iodoethane versus various fluorinated iodoalkanes on Cu(111). High-resolution scanning tunneling microscopy enables us to distinguish the alkyl groups from the iodine atoms, and we find that the ethyl groups and iodine atoms formed from the dissociation of ethyl iodide are well mixed. However, fluorination of the alkyl tail changes this behavior and leads to local segregation of the two species on the surface. We postulate that the low-polarizability and relatively large dipole moment of the fluorinated species drive the ordered assemblies of the fluorinated alkyl species on the surface and discuss this in the context of how solvophobicity can drive the clustering of fluorinated groups and, hence, phase separation. 
    more » « less
  2. null (Ed.)
  3. There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10–7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices. 
    more » « less
  4. Abstract Recent heterogeneous catalysis studies have demonstrated that synergy between Ag and Cu can lead to more selective partial oxidation chemistries. We performed a series of scanning tunneling microscope experiments to gain a better understanding of the AgCu system under oxidative conditions. These experiments were carried out by exposing sub‐monolayer coverages of Ag on Cu(111), in the form of a near‐surface alloy (NSA), to range of oxygen exposures and temperatures. This enabled us to study the initial stages of oxidation of well‐defined Ag/Cu interfaces with atomic resolution and thereby understand the dynamic response of the AgCu NSA to oxygen environments. At low oxygen exposures, oxidation was observed on exposed Cu terraces and at the interface between the AgCu NSA and Cu(111). Higher oxygen exposure led to the segregation of Cu atoms up through the Ag layer and the appearance of surface adsorbed oxygen. Significant phase segregation of Cu was then observed at higher oxygen exposures at elevated temperatures, evidenced by the formation of Cu oxide patches within and on the top of the Ag layer. These results provide a more detailed picture of how AgCu NSAs interact with, and restructure in response to, oxygen. 
    more » « less